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ABSTRACT
(

A model is presented of a Markov process whose state is unknown except
when an inspection is performed . The evolution of the process is
governed by fixed transition probability matrices P and Q under
non—inspection and inspection , respec tively. The costs of i”spection
and non—inspection depend on the current state. The objectiv~ i’ to
characterize inspection policies which minimize expected t O L d i  dis—
cour.ted cost .

The fol lowing specif ic models are presented.  Model I is a process
which s ta r t s  in s ta te  0 and is terminated when , on inspection , the
s ta te  is found to exceed some fixed value M . In Model II the process
is repaired (reverts to s ta te  0) when the s ta te  at inspection exceeds
M . Simp le conditions are g iven which imply that  the optimal inspec-
tion interval  is a non—increasing func t ion  of the  last observed s t a t e .

Model III  is an inventory process wi th  uncer ta in  suppl y as well as
demand . Given order size n , the number received is Binomial (n ; p )
Costs of order ing , storage , and shortage are incorpora ted .  In the
sing le per iod case , condit ions are given which imp ly t h a t  the opt imal
order size is non—increas ing in current inventory. This result extends
to the und i scoun ted  mu l t i period case provided the holding cost is ze ro .
A coun ter examp le is given for a two period case with linear , non—zero

I, . hold ing,  shor tage , and ordering costs.

/ a

_ _ _ _ _ _ _ _ _  ~~~~~~~~~~
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CI{APTF.R I

MARKOV IN SPECTION PROCESSES:
INTRODUCI ION AND APPLICATIONS

1.1 Introduction

We will be ccncerned with processes for which the state is not

known with certainty unless a specific act of inspection is performed.

Once the state is determin ed , a maintenance action is Chosen according

to a policy which is fixed in advance. Whether or not the process is

inspec ted , it ur~iergoes a random transiticn into a new state. Thus ,

at each time period , a choice must be made: to operate the process

without inspection , or to inspec t , and possibly maintain the process.

A variety of problems which have appeared in the literature

fit this model. The applications we will consider fall ur.der thre e

main headings: terminating processes , repairable processes , and an

inventory model with uncertain production. In this chapter we will

discuss br ie f l y each of these models , and give app l ica t ions . ifl

Chap ter 2, a common mathematical framework for these models is

developed . We prove a general theorem about the structure of optimal

policies. In Chapters 3 and 4 we explore in detail the models pre-

sented in this chapter , and app ly the results of Chapter 2.

1.2 A Brief Summary of the General Model

Our underlying process is discrete in time , and its state can be

described by an integer. In general th c-  state is not known .

If the process Is not inspected , a state dependent cost is in-

curred . The process ‘.inaergoes a random transition according to a

transition probabiJ .ity matrix P . The state remains unknown .
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If the process is inspected , again a state dependent cost is

incurred . The process undergoes a transition according to a

(poss ibly different) probability matrix Q . Thus, the act of

inspection may affect the underlying process. In addition , under

inspection the next state of the process becomes known.

We shall assume throughout that the process is Markovian.

This means , given the present state and decision , that future

states (and costs) are conditionally independent of past states

and decisions.

The process described above will be called a Markov inspection

process. For a more formal definition , see Chap ter 2.

We will be concerned with characterizing the structure of pol ic ies

which minimize the expected total discounted cost (or average cost ,

where appropriate) of operating the process.

1.3 Model I: Te rmina t i ng  Inspec t ion  Processes

In this model we will assume that the process has a finite

s ta te  space {O , l , ..., N } . When inspection occurs and the process

is discovered to be in a state j which exceeds some critical value

M , the process terminates.

The terminating process model may be applied to the probleri

of miniinizino the operating cost of a non—repairable machine . We

suppose the machine can be in any one of N + 1 s ta tes  rang ing

from 0 (perfect) to N (failed). Transitions occur according

to a Markov chain and the state remains unknown unless the machine

is inspected. The cost of inspection depends on the state , and

there  is a cost per period fo r  unde tec ted  f a i l u r e .  

~~-. ~~~~~~~~~~~~~~~~~~~~~ ~~~~— .  .-~~
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In Chapter  3 we give cond itions such t h a t  the op t ima l  number

of periods between successive inspection is a nonincreasing function

of the state at last inspection.

A second example of a terminating inspection process is the

“optimal reject allowance” problem . In its simplest formulation ,

a shop must fill an order for N items. It costs C + kC to
0

produce a lot of k items . Each item has a f ixed p robab i l i t y  q

of being defec tive , independently of the others in the lot. Thus

the number of usable items resulting from a lot of size k has

distribution Binomial (k;l — q) . The problem is to compute the

*
optimal lot size k (N) , or equivalently, the optimal reject allow-

ance k (N) — N . This problem is studied in detail by A. Beja [ 1 ].

We may consider Beja ’s model as a terminating inspection process

as follows. The state is the number of good items on hand , or N

whichever is smaller. If k items of the present lot have been

produced but not inspected , we may produce another item without

inspection , or terminate production and determine the number of good

items. The latter action corresponds to inspection. If the state ,

after inspection , is less than N , a new lot must be started and a

set—up cost C is incurred . (This corresponds to an inspection

cost in our general model of Chapter 2). If the state , after inspec-

tion, is N , the process terminates.

*
Beja proves that the optimal lot size k (N) is nondecreasing

in N . He also shows that , if f(k) is the cost of first producing

a lot of size k , and then continuing with an optimal policy, then

f(k) is quasi—convex in k . That is,

_ _ _
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*f (k + 1) < f (k) f or k < k (N)

and

*f ( k  + 1) > k(k)  for k > k (N)

These resul ts , besides being of theoretical in teres t , have

computational implications which are useful in finding optimal

policies .

In Chapter 3, using our Markov inspection process formulation ,

we will extend these results to the case where the output from a

lot of siz e k is dete rmined b y k t ransitions of a Markov chain .

This includes the binomial case , the batch p roduction case , and , in

pa r ticular , t he case where the number of usable items has the Poisson

dist r ibut ion with pa rameter kA

1.4 Model II: Inspection Processes wi th  Repair

This model d i f f er s f rom the te rminat ing inspection model in

t hat , when an inspection takes place and the s tate  is discovered

to exceed a critical value M , the process is repaired and rever ts

to state 0 instead of terminating .

A motivating example is the production process described by

Sackrowitz and Samue l—Cah n [11], in which the s ta tes  of successive

un its produced f orm a MarI:ov chain. A uait  may be inspected ~ t

f i xed cost , and , if de fec t ive , may be replaced by a perfec t i tem .

If not inspected , the item becomes pa rt  of the output  process without

being observed . Under the assumpt ion  t ha t  the Markov chain is

irreducible, the authors prove t ha t  a s t a t iona ry  inspec t ion  pol icy

is optimal.  That is , if the last i te m inspected was in s ta te  i

~ 
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it is optimal to produce a fixed number t . of items before

inspecting again .

In the present work we are assuming that the process cannot

improve (decrease in s t a t e )  spontaneousl y.  We fee l this is more

realistic than the assumption of irreducibility. When s ta te  N

is reached , and discovered via an inspection , the process is repaired

and reverts to state 0 . In Chapter 3 we will present conditions

under which the optimal inspection intervals t . are nonincreasing

in i .

Much work has been done on the related three action model

where no act ion , inspection , and repair are independent a l t e rna t ives .

In particular , S. Ross [10] considered the observed state space to

be ~P = (P 0,P1, . . . )  : P. > 0 , ~ P . = l} wi th  the  i n t e r p r e t a t i o n

that is the posterior probability that the underlying process

is i n state i . He proves that the optimal inspect and repair

regions are convex . For the two—state problem this implies a

four reg ion struc ture for the op timal policy: Take no action if

0 
~~ 

< , inspect if p1 
< p < p 2 , take no ac tion if p2 

< p p 3

and repa ir if p
3 

< p < 1 . (Here p is the probability of being

in the fai led s t a t e ) .

In our mod el there will be only one critical number for the

two—sta te  case: if p < p
1 

take no action; if p > p 1 inpsect

(and repair if necessary) .

Ross ’ work was general ized by D. Rosenfield 1 8 ], who presen ts

a model fri which the op t i mal pol icy can be cha rac te r i zed  by three

cr i t ica l  numbers fo r  each under ly ing s t a t e .  Under spec i f i ed  cond i-

tions on the costs and transitions matrix , Rosenf ie ld  proves that ,
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if the last known state was i and k transitions have since

occurred , it is optimal to take no action if 0 < k < k
1
(i)

inspect if k1
(i) < k < k2(i) , take no action if k

2
(i) < k < k3(i) ,

and repair if k > k3(i) . Two or more of the critical numbers may

coincide for a given i . In addition , he shows that k (i) and
1

k3(i) are nonincreasing in i .

Under condItions similar to those given by Rosenfield , we will

show in Chapter 3 that an analogous result holds for our two action

model. That is, the optimal policy is specified by a single non—

increasing sequence of critical numbers k(i) . It is optimal to

take no action if k ~ k(i) and irspect (and repair if necessary)

if k>k(i) .

We feel that the present model has several advantages over

Rosenfield ’s. In our model repair must be preceded by inspection.

This is realistic in many physical situations. Consider , for example,

a complex system of components operating in a “black box .” Suppose

that , once the box is opened , the state of the system becomes known .

If it is necessary to open the box in order to repair the system , then

the present model , rather than Rosenfield ’s, is applicable.

Furthermore , our results are valid in somewhat greater generality.

Rosenfield assumes that the cost of inspection is a constant surcharge

over the cost of non—inspection . We need only a weaker assumption

that the cost of non—inspection is nondecreasing relative to the cost

of inspection as the state increases.

Finally, since our Inspection repair process is a two action

problem rather than a three action problem , optimal policies are much

easier to compute and administer . 

:A
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1.5 Model III: An Inventory Process with Uncertain Production

In this model random demands for  a commodity occur over a

number of periods.  The problem is to minimize the expected dis-

counted sum of p roduction , stora ge , and shortage costs. As stated

t hus fa r , this is the usua l dynamic inventory model (see for

example [ 5]).

The dis t inct ive fea tu re  of this mode) is that  the ou tpu t  from

a given production lot or order is random. The simplest case is

the binomial case where , when n items are produced the output of

usable items is distributed Binomial (n,p) for some fixed p

More generally ,  the model includes the case of random batch produc-

tion and , in particular , the case of Poisson production.

We assume a linear cost of production (no set—up cost). A

storage cost h(t) is imposed in each period for t units of

inventory in excess of demand , and a shortage cost k(t) Is imposed

for t units short of demand . Unsatisfied demand is carried over

(backlogged) to the next period .

A similar model was considered , for the one period case , by

Karlin ( 4 1. Under the assumptions that the holding and shortage

costs are convex , he proves that the optimal production level

*
n (x) is nonincreasing in current  inventory x . (Intuitively —

the less stock on hand , the more should be produced).

However , Karlin ’s approach does no t extend to the miiltiperiod

case. The reason is that the ri period optimal cost function need

not be convex . A counterexamp le Is given in Chapter 4. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In Chapter 4 we reprove and extend Karlin ’s result , without

assuming convexity but with some restriction on the distribution

of demand (assumed to be FF2 , see [6]).

We proceed by formulating the problem as a Markov inspection

process whose state is the current inventory . The production

decision is regarded as being made sequentially. Thus, suppose

t items (or batches) have been produced in the current period , but

the output of usable items has not been determined . Either an

additional item (batch) may be produced , or production for the

period may be terminated and demand satisfied . The latter action

corresponds to inspection , in our general model , and the former,

to non—inspection.

Applying the theory developed in Chapter 2, we prove that

Karlin ’s intuitive result extends to the multiperiod case, provided

there is no storage cost and no discounting .

When there is a storage cost or discounting the result need not

hold . In Chapter 4 we present an example of a two period problem

with constant demand and linear production , storage , and shortage

costs for which monotonicity of the optimal production level is

violated . In this example it is optimal to produce one item when

initial inventory is three items, but optimal production is zero

when initial stock is two items. Thus, our intuition may fail even

in a very simple multiperiod problem .

In the case where there is no storage cost , we are able to obtain

the result that , if it is optimal to produce when inventory is x

and L periods remain , then it is optimal to produce when inventory

is x and L’ periods remain , L’ L . We are unable to obtain

~

. -~~-~~~~~~-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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the stronger result that the optimal production level is nondecreasing

in the number of periods remaining . This seems to be an open

question.

For the one period case with linear holding and shortage costs

and Binomial (n;p) production , we show that the optimal lot size

for a given initial inventory is nonincreasing in the unit ordering

and holding costs and nondecreasing in the unit shortage cost. The

optimal cost is nonincreasing as a function of p 

- —-
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CHAPTER 2

MARXOV INSPECTI ON PROCE SSES : THE GENERAL MODEL

2.1 Description of the Model

Assume that the state of a process at time ri is given by an

integer X~ . In general , we will assume that X is not known

with certainty. What is known about the process can be expressed

by the ordered pair Y~ = (i,t) , where I = Xn_t is the most

recent state known with certainty and t periods have elapsed

since the state was last determined .

In any observed state (i,t) there are two possible actions :

action 0: non—inspection

action I: inspection.

Let A denote the action taken at time n
n

Under action 0 the process undergoes a transition according to

the transition probability matrix P . Thus P(X +1 = k X = j

= 0) = 
~jk 

independent of the history of the process. In addition ,

if = k , a cost > 0 is incurred and no new information

about the process is obtained . Thus if Y = (i,t) and A
n 

= 0

the process undergoes t + 1 consecutive transitions according to

P between = I and X~ 41 
= j , so that P(X

1 
= Y = (i ,t)

A~ = 0) = ~~~~ . The expected Cost incurred will be C(Y ,A )  =

L 

C(i ,t ;0 )  = 
~~ P

~r0~ 
. Since no information is gained , the new

observed state will be Y~~1 
= (i,t + 1)

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Under action I the process undergoes a transition according

to the transition probability matrix Q . Thus P(X
+i 

= k I Xn 
=

= I) = 
~jk 

, and again X +l is conditionally independent of

the history of the process, given X and A . If X~~~ — k

a cost I > 0 is incurred . Moreover , the new state X becomesk —  n+l

known. Thus we interpret action I as inspection. If Y (i,t)

and A
n 

= I , the process undergoes t consecutive transitions

under P , followed by a transition under Q , between states

X~~~ = I arid = j . Thus P(X
1 

= ‘
~n 

= (i ,t) and

A = I) = 
~~ ~1k~k~ 

. It follows that under action I the expected

cost incurred will be C(Y ,A )  = C(i,t;I) = 

~ 

P~~Q~~IJ 
; and the

nex t observed state will be = (j,O) with probability

~ ~ik~ki

Definition:

We will call such a process a Markov inspection process.

As will be seen in subsequent chapters , the models presented

in Chapter 1 are all examples of Markov inspection processes.

2.2 Definition and Existence of Discounted Cost Optimal Policies

We will study the problem of minimizing the expected discounted

total cost of the Markov inspection process described in 2.1.

We will assume that there is no upper bound to the number of

non—Inspections (actions 0) between two successive inspections

(actions I), but the process terminates after L(<~~) inspections

take place.

- - -  -- . -.- --. , -~~~~~~~~-- - - .-- .~~~~~~--~~ - -
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In some applications , e.g. models I and II of Chapter 1, a

fixed period of time elapses between transitions. In this case

future costs are discounted at a rate a < 1 per transition.

In other applications , e.g. our inventory model (model III

of Chapter 1), transitions involving non—inspections are instantaneous

and one time unit passes between successive inspections . In this

case future costs are discounted at a rate 8 < 1 per inspection.

In the remainder of this section we will treat both cases

simultaneously. On our applications, however , either a = 1 or

8 = 1 . Note that we are also considering the unidiscounted case

a 8 = l

Let it be a policy, i.e. any rule for choosing actions. Let

be the observed state at time n , under policy ~ . Let

A (it) be the action chosen by it at time n . Let T~ (i i )  be the
n

number of transitions under up to the 2~—th inspection . Let

= 0 and fix a , 8 c (0,1]

Define the expected discounted cost of starting in = (i ,t)

and operating under ~ to be

V(i,t ,L,it) =

(2.2.1) i

I L—1
E~ 

~ 8~ ci~C(Y~(r),A~ (it)) I Y = (i,t)

L t=O n=T~ (ir)+1

where E
~ 

denotes the expected value with respect to the distributions

of Y~~(~i) , A (ir ) , and T
~
(
~
) induced by ~r . Note all costs are

nonnegative so that E is well defined.

*
Let V (i,t ,L) — inf V(i,t ,L,~ )

iT

-~~~~~~~----.-~~~~~~~~~~~~~
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Definition :

*
A policy it is optimal if

* *V(i,t ,L,it ) = V (i,t,L) for all i , t and L

We are now ready to state a theorem on the existence of optimal

policies.

Theorem 2.2:

There exists an optimal policy it such that A (ir) is a

deterministic function of the current observed state Y (’rr) and the

number of inspection opportunities remaining , L . That is,

An 
= f ( Y ( i i) , L) 

*
Furthermore V (i,t,L) satisfies the following optimalitv

equation :

V*(i,t,L) = mm J~ ~~~~~ + aV*(i , t + l ,L)

(2.2.2)

~ 
P~~Q~~[I~ + a8V (k ,0 ,L — l)]}

and f(i,t,L) may be any function such that f(i,t ,L) = 0 when

the first term in (2.2.2) is minimal and f(i,t ,L) = I when the

second term is minimal.

If a < 1 , and :he sequences {o~) , {I~ } are bounded , then

(2.2.2) determines V (i ,t ,L) uniquely .

Proof:

The last result is a standard theorem in discounted dynamic

programming [ 2 ]. The remainder of the theorem , which holds even



—~~~~~
--.

14

when L = , and a = 8 = 1 , follows, since all costs are non-

negative , from standard results in negative dynamic programming [l2].B

Remark:

The first term in the optimality equation (2.2.2) is the expected

cost of the policy: perform action 0, then proceed optimality.

The second term is the expected cost of the policy (which we will

call it
0

) :  perform action I, then proceed optimality. Thus the

optimal action is that action which yields the minimt~m cost , when

all subsequent actions are optimal . This is just the well known

pr inciple of optimali ty.

2.3 A Structure Theorem

In this section we will prove a general result which will apply

to the models presented in Chapter 1.

We begin with some definitions.

Definition:

A policy it is said to be monotone if , for each L , there

*exists a nonincreasing sequence t (i,L) such that

*
(I if Y (i,t) and t > t (i ,L)

A( ir)= ~~ *
VO if Y (i,t) and t t (i,L)

when L inspection opportunities remain .

Let be the policy: perform action I, then proceed

optimally .

- -•  ~~~
. 

~~
. - .
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Let it
1 

be the policy : perform action 0, then proceed according

to 71
0

.

Definition:

A policy i~ is said to be a one stage look—ahead policy if

A Ol) = I if and only if V(Y (it);L ,~r
0
) < V(Y (ir);L ,ii

1
) i.e.

it inspects whenever immediate inspection is cheaper than non—

inspection followed by inspection , subsequent actions being optimal.

Remark:

The terminology “one stage look—ahead policy” comes from the

theory of optimal stopp ing problems [ 9 1. In the present case we

identify action I with “stopping” and taying a terminal cost equal

to the expected cost of acting optimally for the remainder of the

process. Action 0 is identified with “continuing .” A one stage

look—ahead policy stops exactly when stopp ing is less costly than

continuing one more stage and then stopping .

Conditions for a one stage look—ahead policy to be optimal can

be found in [ 9 1.
The purpose of this section is to give sufficient conditions

for the existence of an optimal policy that is a monotone , one stage

look—ahead policy .

We will need to make the following assumptions on the transition

matrix P
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Assumptions:

Al: P is upper triangular , i.e. P . .  = 0 for j < i ; and

P . < 1 . (If the number of real states is finite
ii

(N + 1) we allow P~~ = 1)

A2: P is TI’
2 

(totally positive of order 2), i.e.

~~~~~~~ — P .~~, P . ,  > 0 for all I < I’ , j  < j’

Assumption Al means that the real state of the process cannot

decrease under action 0, and , with positive probability, may increase.

Assumption A2 is a technical condition which implies among other

things that P satisfies the increasing failure rate (IFR) property

3 ], i.e. P(X +1 ~ 
j I X )  is an increasing function of X for

each j . The TP2 property is needed in the proof of Lemma 2.3.1

to follow. A complete discussion of total positivitv ~s given In [ 6 ].

We will also require the following

Structural Conditions:

(SC1): There exist critical numbers 3L such that V(j,0,L ,~ 0
) >

V (j , 0 ,L ,ii 1
) fo r  j < j

~ 
and V ( j , O ,L , it

0
) < V (j , 0 ,L ,~~1

)

for j > 

~L 
(Thus if the true state is known to be

~~
- 
~L 

then immediate inspection is less costly than

waiting one period and Inspecting).

(SC2): For each (i,t) there exists t ’ > t such that inspection

Is strictly optimal in state (i,t ’) , when L inspection

opportunities remain .
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The above structural conditions will be verified for each of

the models presented in Chapter 1, in succeeding chapters.

We are now ready to state the main theorem of this chapter.

Theorem 2.3:

If assumptions Al and A2 are satisfied , and the struc tural

conditions (Sd ) and (SC2) hold , then a monotone , one stage look—

ahead policy is optimal.

Before beginning the proof , we will need one more definition

and a lemma .

Definition:

A sequence L~~• is said to have the single crossing property

(SCP) if 1~. > 0 implies &~ 
> 0 for all k > j

Remark:

The usual definition is somewhat weaker : ~t . > 0 ~ ~ > 0
j k—

for k > j . This is not sufficient , wi thou t fu r ther argumen t , to

ensure tnonotonicity of the critical numbers. See the appendix to

this chapter for further discussion and a proof of the following

lemma .

Lemma 2 . 3 :

If 
~ 

satisfies the SC? in j and P satisfies Al and A2 ,

then ~ P~~L~ satisfies the SC? in i and t .

Proof:

See the appendix to this chapter. I
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Proof of Theorem 2.3:

Definir.g ~(i,t ,L) = V(i,t ,L,1T1
) — V( i,t,L ,it0) and conditioning

on the true state X given Y = (i,t) yields:

(2.3.1) ~(i,t,L) = ~

(This key result may also be seen algebraically by direct expansion

of V(i,t ,L,ir0
) and V(i,t ,L,ir

1
) )

The first structural condition (Sd ) is equivalent to

~.(j,O,L) < 0 , j  < j
~ 

and ~(j,0,L) > 0 for j >
~~L 

, i.e. A (j,O ,L)

has the SC? in j

It immediately follows from Lemma 2.3 and (2.3.1) that t~(i,t ,L)

has the SCP in i and t
*

We can now define the critical numbers t (i,L) =

mm (t  : ~~~~~~~~ > 0} .

By (SC2) , for some t . , inspection is strictly optimal in

(i,t .) , which implies that ~~~~~~~~ > 0 . Hence t (i ,L) <

By the SCP in t , E~(i,t ,L) < 0 for t < t (i,L) and

*

~(i,t,L) > 0 for t > t (i ,L)

Furthermore , since ~~i,t ,L) satisfies the SCP in i , we must

*conc lude that  t (i,L) is nonincreasing in I . (Otherwise, if

* *t (i + l ,L) > t (i ,L) , then , for some t , E~(i,t ,L) > 0 and

t~(i ÷ l,t ,L) < 0 , contradict ing the SCP) .

Let us define the policy ~r by A (7T) = I if and only if L

inspection opportunities remain , Y = (i,t) , and t > t (i ,L)

Then it is a monotone polIcy. it is also a one stage look—ahead

*
policy, since it inspects i.i state (i,t) if and only if 
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immediate inspect ion is less cost ly than non—inspec t ion  fol lowed

by inspecticn , subsequent actions being optimal.

*
It remains onl y to prove tha t  it is optimal.

Let t < t(i ,L) . The n V( i,t ,L,tt
1
) < V( i , t ,L , rr

0
)

The term in the optimal i ty  equation ( 2 . 2 . 2 )  corresponding to

action 0 is

~ ~t+l0 + aV (i ,t + l ,L) < ~ ~ t+l~ + aV(i ,t + l ,L , rr ) =
iJ 3 — 1 3 3  0

V(i,t,L,it1
) <V( i,t ,L,it0

)

which is the term of (2.2.2) corresponding to inspection. It

fo llows from Theorem 2 . 2 , that action 0 is optimal in s ta te  (i ,t)
*

when t < t (i ,L)

*
We next consider the case t > t (i,L) . Suppose , to obtain

a contradiction , it is strictly optimal to perform action 0 when

= (i,t ’) , t ’ > t*(i,L) . Let t ’’ = mm ~t > t ’ : action I

is optimal in (i,t)} . (The above set is non—empty by (SC2)).

Note that action 0 is optimal in (i,t ’’ — 1) and act ion I is

optimal in (i,t ’’) . This implies that it
1 

is an optimal policy

in state (i,t ’’ — 1) , hence V(i,t ’’ — l ,L , it
1

) < V ( i , t ’’ — l ,L , it
0

)

But t ’’ — 1 > t (i ,L) so ~ (i , t ’ ’  — l,L) > 0 , yielding a con—

*
tradiction. It follows that action I is optimal for all t > t (i ,L)

*Thus we have shown that it is optimal , and the proof is

comp lete .1

_
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Appendix to Chapter 2:

One of the major properties of TP2 matrices is that they

preserve the single crossing property. In this append ix we will I
use the term weak single crossing property (WSCP) for the usual

definition , with weak inequality instead of strict inequality.

(See the remark following the definition of the sing le cross ing

property).

Karlin [ 6 ] proves that if has the WSCP in j , then

~ ~~~~~ has the WSCP in I . In [ 7 1 Rosenfield shows that if

in addi tion to be ing TP
2 (Al), P is upper triangular (A2) then

~ P~~& has WSCP in I and t

We wish to extend these results to the strong version (SCP)

defined above .

Let ~(j) have the SCP and P satisf y Al and A2 .  Let  
. -

t~(i,t) = ~ P~~~~(j )  Suppose ~~ 10, t0) > 0 , and t 1 > t
0

By Rosenf ie ld ’s lemm a , ~~i0, t 1) > 0 . Suppose , to obtain a con—

t radict ion, ~~ i0, t 1) = 0 . Let 0 < a < ~ (i 0, t 0
) and let

~~~
j) — a if ~(j) < 0

= . Then ~.‘(j) satisfies the SCP .
if ~~j) > 0

Letting ~‘(i ,t) = ~ P~~~ ’(j) , we have t(i,t) - a < ~ ‘(i ,t)  < A(i ,t)

Hence ~‘(i0,t0) 
> 0 . Now ~‘(i,t) satisfies the WSCP in t so

that ~‘(i0,t1
) > 0 . But ~‘(i0,t1

) < A (i0,t~) = 0 , yielding a

contradiction. Thus ~(i,t) has the SCP in t . The same proof

shows that ~(i,t) has the SC? in I . This comp letes the proof

of Lemma 2 . 3 . 1  4~
.

_ _  -—-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~- - . 
~~~~~~~., I~~~~~~~~-~~~~~ i.. ..
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CHAPTER 3

MODELS OF IN SPE CTION FOR TERMIN ATIN G AND REPAIRABLE PROCESSES

4

3.1 INTRODUCTION

In this chapter we will characterize the structure of optimal

policies for the terminating and repairable processes (models I and

II) introduced in Sections 1.3 and 1.4

We will assume that the underlying process has a finite state

space ~O ,1, ..., N } . When inspection takes place and the state

is observed , termination or repair occurs according to a policy

which is fixed in advance. This policy will be assumed to have the

following fo rm : Terminate ( repai r )  the process when the observed

state j exceeds some critical value M < N . Otherwise the process

is not altered by inspection .

The repairable model fits our general scheme of Chapter 2 as

follows : Under non—inspect ion  the  t r ans i t i on  p r o b a b i l i t y  is

P(X
+i 

= I x = i,A = 0) = P . .  as in Chapter  2 .  Under inspect ion ,

the transition probability matrix Q is related to P by

N
P + ~ P.. j = 0io j=M 1

~
Q
1
~~ 

= P (X .~ 1 
= j  X = i,A = 1) = P~ . 1 

~ 
< M

0 j > M .

Thus , under inspection the process is returned to state 0 if it

would otherwise have been in a repairable state (> M) after a

transition according to P . For j > M the inspection cost I
i

is considered to include the cost of repair.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Remark:

Under  cu r  , i s s u ~. : t i ~~r s  en the costs and transit i o u  matrix , if

the und erlvii~g S t J t L  j were keuwu ut. ~ i 1  ~j~es , the ~~ timal repair

policy w . u l i  h d v e  t~~ t~ structu rt~ given above . T~~~t Is , it is optimal

to repair exuctiy ~~~~ j ~ M fur some M . ~1~ re ~ener~ 1 suff icient

conditior.~ for t is t~.je f poli cy , ca l l ed  a ‘
~~entrol limit policy ”

to be o~ t irj , ~~ , are g iven by Dt ri:i,~m i { 3

To s1u~~ th~i~ th e t~~rmi~~ating process a1s.~ fits our general model ,

*we will de fine a t.~~rmninated state N . The ~.r cc ess  e n t e r s  s t a t e

*N onl y under i:~-- i e  ,.tien when the state would ~th~-r~dse have been

> M under a transition a~ cord ir.~ to P . ~~us tf .~ transition matrix

P is defined as Chapter .~ I;v P . = P ( X  X i ,A = 0)
n-’ l n n

with t i u  a d d i t i o n a l t~d itions that P 
* 

= 0 ~ ~~~~ * * 
= 1

IN N N
The transi~~i~..n ~~~~~~ Q t u r  ins~~ect  :~~n i., : t-n by

P . . ,  j < M

Q = P (X = X = i ,A = I) ~~~ 0 j < Nn n — —

*
i = N

f or i N , ar.i * * = 1 . sc f u r t i ~~r .u n n~ tNt ir .spection cost

I 
* 

and t.Oe ~~~~ -ins ~ u ct ion u~~t 0 
* 

.
~~ 

t .~~. : .  INn s , when the
N

process is I s  t t~~~ i and dl~ cuv~ i e ~~ t .  c t n t e t  ~ a —t .~te j >

*it is p 1 od st, t a N and n. t ar~~ r ce~ -t art i n ~ urred . The

inspect le~ c o st  I j N i s  C O n s  :d~~ od includ€ any cost of

terminating tb -r .~~eao.

_ _ _
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In this chapter we will consider the number of potential in-

spection opportunities L to be infinite. We will discount costs

at each transition (inspection or non—inspection) so that c~ < 1

and B = 1

In light of the above assumptions , the optimality equation

(2.2.2) reduces to

(3. 1) V*(i,t) = mm t~3 ~~~~~ + c~V(i ,t + 1); ~~~~~~~ + aV *( j , O ) ) ~

We will show that the optimal policy for both processes is

*specified by a nonincreasing sequence of critical numbers t (i)

such that it is optimal to inspect in state (i,t) if and only if

*
t ~ t (I)

3.2 Structural Results for  Model I

In order to use the results of Section 2.3, we will again make

assumptions Al and A2 of that  section : The transition matrix P is

upper triangular with P~ 1 
< 1 for i < N and P is TI’2

We will need to show that the structural conditions (Sd ) and

(SC 2) of Section 2 .3  hold . We will there fore  make the following

assumptions on costs :

Bl : I . > 0. , j  ~ H and I~ — O~ is nonincreasing in j

for j < N

B2 : I~ < O~ + ~ 
~ 

1’jk 1k for  
~ 

M

AssumptIon B]. means that , for the “good” states j < M , the

cost of inspection is larger than the cost of non—inspection , but
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the the cost of non—inspection increases relative to the cost of

inspection as the state becomes higher .

In order to interpret condition B2 , wa will int roduce the

auxiliary observable state (j,-1)

Definition:

We will say that y
0 

= (j,...l) if the value of is known

to be j before the decision A0 
is chosen.

Note that this is consistent with our definition of (j,t)

t > O

Assumption B2 is equivalent to V(j,—l ,v
0
) < V(j,—l ,rr

1
) or

~(j,—l ) > 0 , for j > M  . This means that , given the next state

will be j > H , immediate inspection and stopping is less costly

than non—inspection followed by immediate inspection and stopp ing .

If inspection is strictly optimal for state (j,—l) , j  > M

then B2 must hold . The reserve implication is also true , as a result

of the proof of Theorem 2.3.
0

For the case H = N , B2 reduces to 
N 

, i.e. inspection

(and stopping) is cheaper than non—inspection forever.

Finally, if -
~ = 1 , 0. > 0 , and I~ is nondecreasing in j

j > M  , then B2 is satisfied.

We are now ready to state the main theorem of this section.

Theorem 3.2:

Under the assumptions Al , A2 , Bi and B2: There exist critical

*numbers t (i) -~ nonincreasirkg in i , I < M , such that , defining

*
to be the policy which inspects at (i,t) if and only if 

~~~~~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~ . - -. - . ,
~~~~

. _
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* *
t > t (i) , it is optimal.

* *Furthermore it is a one—stage look—ahead policy, i.e. it

inspects at (i ,t) if and only if inspection at (i,t) Is cheaper

than non—inspection , followed by inspection at (i,t + 1) , sub-

sequent actions being optimal .

Proof:

By Theorem 2.3 , it is sufficient to establish the structural

conditions (SC1) and (SC2). We will need the following two lemmas :

Lemma 3.2.1:

* 
t—t O *Information inequality: V (i ,t) > ~ ~~ V (j,t0

) for all

— l < t
0

< t

Proof:

Let it be the policy “proceed op timall y under the assumption

that Y0 
= (i,t) .“ Let C(it) = V ca

n
C(Y (_) ,A ( ~~)) be the (random)

total discounted cost under it . Thus V (i,t) = V(i,t ,it) =

E(C(it) I Y0 = (i,t)) = E(C (it) I = I) = (using the Markovian

property of the process) ~ P
O
E(C() I j) P

0v(j t ) >

t—t
O *

~ ~~ V (j,t
0
) .1

Remark:

We call this the information inequality because it states that ,

if the decision maker is informed of the outcome of the (c — t
0
) p

step transition from state I , and acts optimally on that Infor-

mation, this action cannot increase total expected cost.

- .., - , “ .~~~--“~~~~~~~~~ -- — — - . --— _ _
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Lemm a 3 . 2 . 2 :

(a) For any sequence 
~~~~~~ ~~~ 

and any j

V tlim L P . • L~~• =
13 3 N

(b ) u r n  ~;(i t) = ‘N

Proof:

From Assumption Al , the states fO ,i, ..., N — 1} are transient

and state N is absorbing . It follows that

= 

~l j = N

This proves (a).

To prove (b), let a > 0 be given and let T be sufficiently

large that t > T imp lies P~~ > 1 — a . Then for t > T
* t+l *V (i,t) < V(i,t,it

0
) = 

~ ~~~~~ 
(I. + cay (j,0)) <M c  + (1 — c)I

N

wh:re M = max .{i . + czV
* (j , O)} is a constant independent of c .

(V (N ,O) = 0 since (N ,O) is identified with (N , 0) )  . It

follows that

u r n  sup V*(i,t) < ‘Nt ~~~

To obtain the reverse inequality , we will use L emma 3 . 2 . 1  to
* •--~-1 *o bta ir. V (i,t) ~ Y P . V ( j , — l )  . Hence if t > T , we have

V (i,t) ~ (1 — c)V (N,— 1) . Since N is an absorbing state ,

either it is optimal not to inspect at all future times, at cost 

--,-~~~~~~-~~~~ 
, . .  

~~~~~ . -. 
~~~~~~~~--.

~~~~~~~-~~~~~-
-

~~~~~~~~~~~~
. --- -
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0

i. , or it is optimal to inspect (and stop) at cost . By

*
62. ~~ < 1 — ca so in:Pectlon is optimal and V (N,—l) = ‘N

Thus T > t implies V (i,t) > (1 — c)I
N 
. It follows that

lim inf V*(i ,t) 
~ 

, and the result Is proved.U
t -

~~~~~~

Proof of Theorem 3.2 (continued):

To establish (SC1) we must show that ~(j,O) has the SC? in j

As in the proof of Theorem 2.3, we may express .l(j,0) = P j k ~~
(k

~
_ l )

By Lemma 2.3, if ~~k,—l) satisfies the SC?, so does ~(j,0)

Notice tha: ~.(k ,—l) = V(k,—i ,~ 1
) — V(k ,—l ,it

0
) = 0

k 
+

~ 
P 1(~

(I
~ 
+ aV (2 ,0)) — 

~
‘k 

+ ciV (k ,0) )  . If k > H , then

V(2 ,O) = 0 for £ > k , so that ~ (k ,—l) + a 
~ 

— ‘k 
> 0

by Assumption B2.

Thus, to establish that ~.(k,—l ) has the SCP , it suffices to

show that ~ (k ,—l) < 0 for k -t M . We consider two cases.

Case I:

V ( k ,O) = 

~ ~k2~
’Z 

+ caV*(2,0)) . (Inspection is optimal in

observed state (k,O)) . In this case ~ (k ,—l ) reduces to

— t
k 

< 0 (by Assumption Bi).

Case II:

V ( k ,0) = 

~ ~k2~ 1. 
+ c~V ( k ,l) . (Non—inspect ion is opt ima l in

state (k,0)) . In this case ~(k,—l) becomes
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[a P,~~~~ , - 0, ) - (I~ - °k~] 
~2 [

~ 
P
kY

V (~~,0) - V ( k ,1)]

The first term is non—positive from Bi because (I. — 0.) is non—
3 3

increasing in j and — 0
k 

> ~ . The second term is non—positive

as a result of Lemma 3.2.1. Thus ~~k,—l ) < 0 fo r  k < M . The

first structural condition (SC1) is now estchi.isbed.

Remark:

Assumption Bi can be weakened to

Bl’: a 
~ 
P
k~

(I
z 

— O
~
) 
~ 
‘k 

— °k 
0 , k < M

To establish the second structural condition (SC2), we co nsider

the o pt i mal i t v  equa t ion  (3 .1 ) .  Let be the  d i f f e r e n c e  o~
’ the

terms corresponding to non—inspection and inspection , i.e.

it 
= 

~ P O ~ + aV
*(i,t + 1)

— ~ P~~ (I . + ciV (j,0))

We must show that for any I , for sufficiently iar~e t , i r .sp ec t ion

is strictly optimal when in state (i ,t) . By Theorem 2.2 , it wi lt

be sufficient to show that lim ~~~ > 0 . Rewriting ~~~ . as
it it

t-p
~~~

= ~ P~~
l
(0. — I.) + 1(V

*(i ,t + 1) — 
~~ 
P~i’V (i~~0))

we app ly Lemma 3.2.2 and obtain

*u r n  ~~~ . (0 — I ) + a (I , — V (N ,0))
it N N

- - -, -~~~~~~~- .--~~~~~~~~ ~~~--  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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*
Since V (N,0) = 0 , this becomes

lint °N 
+ aI

N ‘N 
> 0  by B2.

t-p
~~~

Hence (SC2) is established . By Theorem 2.3, the proof is now

comp lete.U

3.3 Structural Results for Model II:

Model II (inspection with repair) can be viewed as a special

case of model I by considering the optimal cost after repair ,

*
V (0,0) , to be a terminal Cost , and including it in the inspection—

repair cost I
i 

j  > H . In order for V*(0,0) to be finite ,

of course in this case we must have a < 1

We prefer , for reasons of clarity to let I
i 

j > M  include

only the cost of inspection and repair , and leave V (0,0) separate.

This will require only minor modifications to the proof of Theorem 3.2.

We need only modify Assumption B2:

62’ : I
i 
+ czV (0 ,0) 0. + a 

~ 
P .k (I

k 
+ czV (0 , 0) )

Theorem 3.3:

Under Assumptions Al , A2 , Bl , and B2’ , the conclusion of Theorem

3.2 hold.

The condition B2’ means that , in state (j,—l) , j  ~~M

immed iate inspection (and repair) is cheaper than non—inspection

followed by inspection , subsequent actions being optimal. From the

proof of Theorem 2.3 , cond ition B2’ is equivalent to inspection

being optimal for all (j,t) , j  > M , t > —l 

- --- .-~~~~~~~~~~~~~~ -- .~~~~~~~~~-~~~-.-~~~~~~
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*
The problem with B2’ is that it invoLies V (0,0) , which  is

not readily obtainable from the parameters of the process. However ,

— *
if an upper bound V > V (0,0) is available , a sufficien t condition

f or B2’ is that the inequality hold , with V substituted for

*V (0,0)

B2’’ : I. + aV < 0. + a ~ P . (I + cLV)
3 3 jk k

Lemma 3.3:

— *
If B2’’ holds with V > V  (0,0) , then 62’ holds.

Proof:

Immediate , since the coefficient of V is a on the L.H.S.,

and a
2 on the R . H . S . U

Remark:

One such upper bound V can be obtained by considering the

policy it : “never inspect.” The expected cost of acting according

to this policy starting in state (0,0) is V ( O ,O ,rr) =

t t+i *
ca 

~ ~~~~ 
0. , which is of course not smaller than V (0,0) .

3
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CHAPTER 4

AN INVENTORY MODEL W ITH RANDOM PRODUCTION

4.1 Introduction

We consider the usual dynamic inventory problem of minimizing

production , shortage , and holding costs over time, subject to

random , periodic demands. (See for example [ 5]). We impose the

added feature , however , that when producing (or ordering) the amount

actually added to stock is random ,

The simplest case of this model is the binomial case. Suppose

each item produced has a fixed probability q of being unusable ,

independently of all other items produced . It follows that if

production level n is chosen the number of usable items produced

will be distributed Binomial (n,p) , where p = 1 — q

More generally, we will also consider a model in which produc—

tion occurs in discrete batches of random size p . Batch sizes

are assumed independent with a common distribution P(p = j )  = p .

When production level n is chosen , the number of usable item s

produced is a(n) = p . . The binomial model is, of course , a

special case of this with p
0 

= q and p1 
= p . Another special

case is the Poisson model , in which 0(n) is distributed Poisson

x j  ~~(nA ) . This corresponds to Pj 
= .

‘,
~ 

, j = 0,1 

We will assume that demands occuring in each period are in-

dependent , discrete random variables > 0 , with a common density

j) = q
j 

. Unsatisfied demands will be assumed backlogged

(carried over to the next period). Thus , Inventories in successive

periodo are linked by the equations
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(4 .1.1) x .~~1 = ‘1 
— = x~ + ..

~~~

. —

Here x 1 is the initial inventory in period and v . = x~ +

is the inventory ufter pro~~1ct i3n but before ~ernand is satisfied.

A negative value of x . signifies a cumulative excess of demand

over production. ~‘.e are imp licitl y assuming that there is no lag

in production , i.e. production undertaken during the current period

will be available to meet that period ’s demand .

The cost of producing at level n , c(n) , is assumed to be

linear with no set—up cost , i.e. c(n) = nc , c > 0

A holding cost h(y . — ~~.) is incurred whenever the inventory

after production exceeds demand . A shorta~ e cost k(~~. — v .) is

incurred whenever there is insufficient i J t ~~~tOrV to meet demand .

We will assume that h() and k(S) are nondecreasing functior.s

which vanish for negative arguments.

If initial inventory is x~ and production level n . is

chosen , the cost for period i will be

= cn . + h ( x . + t . — 
~~. )  + 

~~~~~ — x . — 
~~~~ .

We seek a p ci  icr it (a rule for cheosing n .) to minimize

[L-1 ,
the expected total discounted cost E ~ E ’ e(x

2 ,n ,~~, ,~~~~) x
0~L t=o .-

~~~~~~~

. J
The number of periods L nay be eitht~r finite or infinite. The

expectation is ~~ th respect to the distribution of 
~~~

. and the

distrihuti . n of ~‘c’iced by thr~~igh choice of n~
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4.2 Formulation of the Inventory Model as a Markov Inspection Process

We will now show that the inventory process with random productio tt

described above , fits the Markov inspection model of Chapter 2.

The underlying state of the process is the current inventory x

After observing x , we must decide how many batches to produce. We

may consider the decision as being made sequentially as follows :

Suppose t batches have been produced , but the number of usable items

t

they contain , ~ p .  , has not yet been determined. This corresponds
j=l -~

to the observable state (x,t) . We may either produce an additional

ba tch , or terminate production. The former action corresponds to non—

inspection , at cost C , and yields the new observable state (x,t + 1)

The latter action corresponds to inspection , since the new state

t

(y,O) , where y = x 4 
~~ 

p
1 

— ~ becomes known.
i= 1

The transition matrix associated with production (non—inspection )

is given by

x 
~ 

x ’
P ~~~~~~~~~~~~~~~

xx I x > x

The transition matrix associated with termination and satisfaction of

demand (inspection) is given by

Iq , x > x ’
, x-x —

=

The costs of non—inspection and inspection , respectively are

- C and I = h(x) + k(-x)

With these identifications our inven tory process becomes a

Markov Inspection Process as defined in 2.1..

~ 

. --.-- — - .-----— ~~ ----—- .——---——- . ——------ -



Remark:

The model of Chapter 2 permits greater generality, in that the size

of the j—th batch produced might be allowed to depend on previous pro—

j — l
duction x

1
+ 

~ p . . This would give rise to a more general transition
k l

ma tr ix than P , r iven above . However , as i t  is difficult to see anyxx

application for this added generality , we will not pursue it further.

We seek to minimize the expected total discounted cost over L

periods , discoun ting at a rate of ~ per period . The optim alirv

equation (2.2.2) specializes to

1 *  4
VL
(x,t) = mm 

k
C + V (x ,t + l,L);

(4.2.1) 
*

~ ~xy~yz 
{h(z) + k(—z) + ~iV (z,0,L — l)]} .

Having identified our inventory model as a Markov Inspection Pro—

cess, we wish to apply the results of Chapter 2 to find conditions for

the optimalitv of a monotone policy. In other words , when is the

optimal ordering level a decreasing function of current inventory ,

as intuition suggests?

Note that the matrix P is upper triangular. If the distribution

{p 1 } is such tha t P is TP2 then Assumptions Al and A2 of Chapter 2
J

are satisfied. (Such distributions are called Polya frequency

functions of order 2). (PF2) . See [ 6 J .

Furthermore , aince the unit production cost is c > 0 , the second

structural condition (SC2) must hold. Otherwise , for some observed

state (x,t) , continual prodLction is optimal. But this policy has

infinite expected cost , which produces a contradiction. 

~~~ - ---- -~~~~~~ -~~~~~~~~~~~~~~ - - - - -. - . - - 

.
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Thus the general structure theorem of Chapter 2 (Theorem 2.3)

applies, provided we assume the first structural condition (Sd ).

Theorem 4.2:

For the L period production problem with PF2 production

distribution (p. ) , linear ordering cost , and general holding and

penalty costs , if there is a critical number x
0 

such that ordering

zero is preferred to ordering one when x > x
0 

and not otherwise ,

(subsequent orders being optimal), then the optimal order size

*
n (x,L) is nonincreasing in initial inventory x

Furthermore , the cost of the policy it : (order n , then proceed

optimally), V(x ,O ,L ,i t )  , is quasi—convex in n . (A function f(n)

is quasi—convex if f(n + 1) < f (n) f o r  n < some n and

*
f(n + 1) > f(n) for n > n )

The fact that V(x ,0,L,it ) is quasi—convex in n is an immediate

consequence of the optimality of one step look—ahead policies

(see (2.3) 1

In the remainder of this chapter we will let V(x,O ,L,r )  =

V(x,L,i t )  and V*(x ,0,L) = V*(x,L) . Also we will deal only with

the binomial case henceforth.

4.3 The Binomial, Single Period Case

We first note that when production is Binomial the associated

transition matrix has the form

q x~~— x

P , p x ’ = x + lxx
0 otherwise.
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It is immediate that P satisfies hypotheses Al and A2 of 2.3; P

is upper triangular and totally positive of order 2.

In order to app ly Theorem 4.2, it is sufficient to verify the

structural condition (SC1). That is, we must show that there is a

critical number x
1 

such that V(x,T1
1

) < V( x ,rr
0) for x < x

1

and V(x ,- 1
) > V( x ,r0) for x > x

1 
. (We suppress L for the

single period case). This will imply that the optimal order size

* ) = 0 for x > x
1 

and n*(x) > 0 for  x <

To show that the first structural condition holds , it will be

necessary to make the following assumptions:

A3: The demand distribution {q.} is a Polya frequency

func tion of order 2 (PF
2) . That is, the ma trix

Q~~~~ 
q . .  is TP2 (see Assumption A2 of 2.3).

A4: The function Z(x) = ~~
- x + h(x) + k(—x) is quasi—convex
p

with a minimum at x = 0 , and strictly increasing for

x > 0 . (This is equivalent to ~.(x + 1) — ~~x)

satisfying th-.~ SCP in x).

Assumption A3 im~ediately yields the analog of Lemma 2.3:

Lemma 4.3.1:

If {q~ ) is a PF2 distribution and m . satisfies the SCP

in j , then ~ q.m1 .  satisfies the SCP In i

Proof:

Apply Lemma 2.3 to the matrix Q
1
~~ 

and make a change of

variab les .U

_ 
- - - -~~~~ -- -- -- .~~~~~~~~~~~~~ --- - --- ---- ~~~~~-~~~~~~~ -—-
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Assumption A4 has the following interpretation: Consider

the certainty equivalent problem where we pay per item and

all orders are filled exactly. Suppose demand in a period is

known. The function i(x) represents the relative cost of pro-

ducing an excess x over demand . Assumption A4 implies that

i (x) is nonincreasing in x for x < 0 , which means that each

additional unit cost of production £~ is more than compensated

for by a decrease in penalty (shortage) cost k(—x) . Thus

x + k(—x) ~ x , x < 0 . Clearly, when x > 0 , x + h(x)  ~ x

(strictly, for c > 0).

Theorem 4.3:

For the one period problem with binomial production , Assumption

*
A3 and A4 Imply that the optimal production level n (x) is a non—

increasing function of initial inventory x . Furthermore , for  each

x , the cost of the policy “produce n ,‘ V(x,i t )  , is quasi—convex

in n , i.e. V(x ,it +i
) < V(x,r )  for n < n (x) and V(x ,

~~+1
) >

V(x,it ) for n > n (x)

Proof:

By Theorem 4.2, we need only show that the first structural

condition (SC1) is satisfied , (SC2), (Al), and (A2) having already

been shown. Equivalently , we must show that for some x
1

V(x ,it 1) ~ V(x ,
r
0
) when x < x

1 and not when x > x
1 

. We must

show that ~(x) = V(x ,it1
) — V(x ,r

0
) satisfies the SCP in x

By Assumption A4, for Z(x) — x + h(x ) + k(—x) , the successive
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differences Z(x + 1) — 2(x) satisfy the SCP in x . By Assumption

A3 and Lemma 4.3, so does

[2 (x + 1 — z) — 2 (x — z ) ]  =

E {L(x + 1 — 

~
) — £(x — ~) }  =

(4 . 3 .1)
+ 2~ (x + 1) — 2

1
(x) , where t

1
(x) =

E {h (x - 
~~) 

+ k(~ - x)}

is the expected storage plus shortage cost when inventory is x

a f t e r production . But

~(x) = V(x ,rt
1
) — V(x ,r0

) =

[c + q2
1

(x) + p 2~1
(x + 1)] — ~1 (x)

c + p(2~1
(x + 1) — Z , (x))

Since the e:~pression in (4.3.1) is just 
1 

~(x) , we conclude that

~~x) also satisfies the SCP , and the proof is concluded.U

Remark:

Note that no assumptions on the form of ti (x ) and k(x)

are made , other than A4.

There is an alternate approach to obtaining the optimalitv

of a monotone policy, assuming convexity of h(x) ~nd k(x)

but without restriction on the demand dIstribution. This is the

approach followed in Karlin , Arrow and Scarf [ 4 ] . This method

*does not ~xtend to the multi—period case , however , because V (x)

need not be convex when h(x) and k(x) are.
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*Exarnple 4.3.1: (Non—Convexity ~f the Optin.~1 Cost Funct ion V (x))

* *
Let V t x )  = V (x ,l) be the opt im~ 1 ccst f c o c t 1 ~~n f o r  the

one pc io d problem ’ with initial inventory x . Let V ( x , )  h e

the e- .~ ected cost under  the  po l icy  “ produce  n

1 ~3u u > O
Suppose p = -

~~ , c = 1 , h ( u )  E 0 and ku) = ‘ 
—

u < 0

Assum e also that the demand = 2

Clear l y V* (2)  = 0 and n~~(2) = 0 .

For x = 1 -we compute as follows :

V(x ,tr
0

) = k ( l )  = 3

V(x ,Tr
1
) = c + qk(l) = 2 1/2

V (x ,ic2) = 2c + q2(k(l)) = 2 3/4

By quasi—convexity in k of V (x ,Tr
k
) (Theororn 4.3), we may

conclude that V (1) = 2 1/2 and n (1) = 1

Similarl y,  fo r  x = 0 we compute

V(O,r0
) = k ( 2 )  = 6

V(0,it1
) = c + qk(2) + pk(l) = 5 1/2

V(0,ir -,) = 2c + q2k(2) -
~ 2pqk(l) 5

V(O,ir3) = 3c + q 3k(2) + ~q
2pk(l) = ~ 7/8

V ( O ,~i 4) = 4c q~ k(2) + 4q
3pk ( l )  = 5 1/8

A~~iii by Theorem 4.3 , since V(0 ,~ 3) < V (O ,i~4) and

*V(O ,r .~) e V (O,’ .) , j < 3 , we ran conclude that V (0) = 4 7/8

and r. (0)

-~~ -. --~~~~~~- -~~~~~~~~~~~~~~ -~~~~~ ~~~~~~~~~~~~~ 
J
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*Thus V (x) can be tabulated~

*
x V (x) n (x)

0 4.875 3

1 2.5 1

2 0 0

*
We sec immediately that V (x) is strictly concave on the set ~O ,l ,2)

When the holding and shortage costs are linear , say h(u) =

*and k(u) = ku , respectively, we can determine n (x) by the follow-

ing reasoning : Suppose we have produced , but not inspected , n items.

Let a(n) be the Binomial (n;p) random variable denoting usable

output. The expected cost of producing an additional item is

c + hpP (x + c(n) > ~
) , which is nondecreasing in n . The expected

gain from producing an additional i tem is kpP (x + o(n) ~,) w h i c h

is nonincreasing in n . It follows that

n*(x) = mm {n : kpP(x + o(n)  < 0 < c + hpP (x + (n ) >

c + ph k= mm ~n : P(o(n) < — x) 
~ p (k + i-i)

From this relationship several interesting conclusions can be drawn .

Lemma 4.3.2:

In the case where all costs are linear:

* c + ph(a) n (x) depends on c , h . and k only through 
p (k + h) ‘

(b) n (x) is nonincreasing in c and h and nondecreasing

in k

(c)  Produc tion is op t imal onl y when p > p
0 

.
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*
The dependence of n (x) on p is more subtle. The next

*
example (4.3.2) shows that n (x) need not be a monotone function

of p for a given x , even when ~ D (deterministic demand).

Note that it is optimal to produce if and only if p > p0 
= -

~~

p r o v i d e d  x < D . The optimal production level n appears to be

unimodal as a function of p for  fixed x . Thus, when p is near

* *p0 , and when p is near 1 , n = D — x , but n may be strictly

larger than D — x for intermediate values of p . For p near

p
0 , 

it is optimal to produce D — x , but no “spares.” This is

because p is so small that the expected reduction in shortage cost

from producing a spare is less than the unit production cost c

* *In Example 4.3.2 the optimal cost V = V (0) is a nonmncreasing

function of p . This is true in general for the one period case.

Lemma 4.3.3:

*For fixed inventory x , the optimal cost V (x) is a non—

increasing function of p

Proof:

When the holding cost is zero , for a fixed ordering level n the

expected cost is cn + kE max (
~ — x — ct (n),0) . This is a continuous ,

nonincreasing function of p . The result follows immediately in

*
this case , since V (x) is the minimum of the above functions .

When the holding cost h is non—zero the expected cost of an order

size n is cn + kE max (~ — x — ct(n),0) + hE max (x + 0(n) — ~,0)

which increases for p 
~~ and decreases for p < p for some p

It can be shown that n < n for  p > p , which would imply the

resul t. We omit the proof .

_______________________ 
- —-~~~~~ -— -  ~-- - —----— — -- - -—-———-
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*
Example 4.3.2: Variation of Optima l Order Size n (x) and Optimal

*
Cost V (x) as a Function of p fot Fixed x

Consider the one period linear problem with c = 1 , k = 4

h = 0 , x = 0 , and D = 2

Note that for p < -
~~ 

= .25 , n = 0 and V = 2k = 8 . For

p = 1 , n = 2 and V = 2c = 2 . For intermediate values of p

* * *n and V are given in the following table. Note that n rises

*
to a maximum and then decreases , while V is continuousl y decreasing

in the interval [0,1]

4.4 The Multiperiod, Binomial Case: A Counter—Examp le and a Result

The result of the previous section concerning the optimality

of monotone ordering policies for the single period case, does not

extend wlth3ut restriction to the multiperiod case. The following

example is a 2 period problem with linear ordering , holding , and

shortage costs and a constant demand , for whic h a monotone policy is

not optimal.

Example 4.4: An Example in Which a Monotone Policy is Not Optimal

We se t c = 1 , k (u )  = 3u , h(u) = hu , p = -
~~ , and ~ E 2 .

Assume h < l

Consider first the single period case. Note that with h = 0

this is identical to Examp le 4.3.1. A similar calculation shows the

following result:

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ,  -~~~~~~~~~~~~ , .  - - - ,~~~~~~~~-
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EXANFLE 4.3.2

* *TABLE OF n AND V AS A FUNCTION CF P

* *P n V

0—.25 0 8.0

.26 2 7.92

.28 3 7.73

.30 3 7.51

.35 4 6.97

.40 4 6 .42

.45 4 5.93

.50 3 5.5

.55 3 5.07

.60 3 4.66

.65 3 4.30

.70 3 3.97

.75 3 3.69

.80 3 3.45

.85 2 3.2

.90 2 2.8

.95 2 2.4

1.0 2 2.0

A - - -~~~~~~~~~~~~~~~~ - ~~~- -  --~ . - -~~~~~~~~~~~~-- -.-~~ .--, ~~~~~~~~~~~~~ ~~~~~~ - - .-.--.~~~~~ -.~~.. .
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* *x xi (x,l) V (x ,l)

2 0 0

1 1 2.5

0 3 4.875 + .l25h

Analysis of the two period case is dependent on the value

of h

* *x n (x ,2) V (x ,2)

4 0 2h

1 2.25 + l.5h h < 1/2
3

0 2 .5+h h > l / 2

(2 4.46875 + l.03l25h h < .448
2

4.875 + .125h h > .448

Thus we see that for .448 < h < .5 , n*(2 , 2) = 0 and

n(3 ,2) = 1 . The optimal policy is not monotone .

A further analysis of the two period case reveals that a one—

stage look—ahead policy is not optimal. Let be the policy:

order k during the first period , then continue optimally. For

this example the following behavior may be observed , given initial

inventory of 2 with two periods remaining .

< 

~l 
< 

~0 
0 < h < .429

< < .429 < h < .448

iT
O 

< 1T
2 

< IT
1 

.448 < Ii < .467

iT
0 

< iT
1 

< 71
2 

.467 • h 

---- - - -- -~~~-- - -~~~~~~~~~~~~~--~~~ --
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(Here ~~~ means V(2,2,rr
i
) < V(2 ,2,~~~)). ‘~

‘or .429 -c h < .467

V(2 ,2,7 1 )  is not quasi—convex in n and the one stage look—ahead

policy is not optimal.

Example 4.4b: A Second Example in Which a Monotone Policy is Not
Optimal

We modify the previous example by setting the hold ing cost

h = 0 and imposing a discount factor 8 < 1

We consider the two period case.

* *x n (x ,2) V (x,2)

4 0 0

(o 2.58 8 < .8
3 

—

1+1.258

(0 4.8758 8 < .831
2

t2 2 + 2.468758 8 > .831

Thus we see that in the interval ~ = .8 to 8 = .831 , a

mono tone policy is not optimal.

The above example illustrates the effect of the concavity

*of V (x ,l) on optimal policies for the two period case. The

closer initial inventory is to total demand 2D , the greater the

expected reward for ordering an additional item . This leads to

the possible optirnnlitv of non—monotone policies ~ I ;  r~e case of

positive holding cost or discount factor ~ < 1 .

However , in the non—discounted multiperiod case with no holding

cost , a monotone policy is optimal .

-- —- —
~~~~

. ---—~~~~
—-—  - --- -- - - - -- -  - - -  ,

~~-- — - - -~~-~~~~~~~~~ ---— --
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Before proving this result we state a lemma which is valid

under very general conditions :

Lemma 4.4:

*
If n (x ,i) > 0 , then

V ( x ,i) ~~~~ V ( x  + l , 9 )

Proof:

Given the option to inspect the first item produced and revise

initial lot size accordin~1y, the optimal cost for i periods ,

starting with inventory x would be

* * *c + qV (x ,L) + pV (x + l ,i) V (x,f)

The R.H.S. represents the optimal cost in the absence of such an

option.

Remark :

This result shows that , when it is optimal to order, the value

of an additional item in stock is at least as large as its

“certainty equivalent price ,” c/p -

Theorem 4.4:

For the i period , undiscounted problem with binomial production ,

if there is no holding cost (h(u) 0) , then assumptions A3 and

A4 imply:

~J . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--—

~~
-------
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*
(a) The optimal initial prod uc tion lo t size n (x ,9.) is

a nonincreasing func tion of initial inventory x

(b) The expected cost of the ‘-‘olicy -n : produce xi

then choose all subsequent lot sizes optimally,

V(x ,.Q ,ir ) , is quasi—convex in n -

Proof:

By Theorem 4.2, we need only show that ~1(x,Z) sat isfies

the SCP in x - Equivalently we must show the existence of a critical

number x
9. 

such that V(x ,9.,rr
1
) < V(x ,2.,r

0
) for x < x

9. 
and

> V(x ,2.,iT
0
) for x > x

9. -

- .Proceeding inductively on 9. , we note that the result has . -

previously been shown for 2. = 1 . Assume that E~(x,t 
— 1) sa tisfies

the SCP -in x and x
9 . 1  

= mm (x : ~~x ,9. — 1) > 0) > 0 .

By the induction hypothesis , n (x,2. — 1) = 0 for x > ~~~~ - ‘

*Thus V (x ,i — 1) is also the expected 2. — 1 period cost when

inventory is x after initial production. For x > x 9 . 1

V(x ,i — 1,-r
0
) < V(x ,2. — l,JT

i
) , or equivalen tly

* * *V (x,... — 1) < c + pV (x + 1,9. — 1) + qV (x,L — 1) -

c *
This shows that — x + V (x ,9. — 1) is strictly increasing in x

for x .

Analogo usly to the proof ~f Theorem 4.3 , let m(x) =

x + k (-x) + V*(x ,2. — 1) . Since k(—x) = 0 for x > x
2 . 1  

(> 0)

: 
preceding remark implies that m(x) is str~ ctlv increasing
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By Lemma 4 .4 and monotonicity of k(—x) , rn (x) is n on in c rea sing

for x < x
9 . 1  - We have shown that m (x + 1) — m (x) satisfies

the SCP in x - As in the proof of Theorem 4.3, this implies that

= pE {m (x + 1 — — m (x — ~)1 satisfies the SC~ in x

To complete the induction , it will suffice to prove that

x9 
= mm Cx : A (x,Q) >0) > x

9.1  - We have shown that

m (x + 1) — m (x) < 0 for x < x
9 . 1  - Titus ~~x ,Z) =

pE {m(x + 1 — ~
) — m(x — ~) }  < 0  for x < x

9 . 1  - It follows that

x
9. 

> x
9 . 1  , 

which completes the proof .U

We have also proven the following :

Lemma 4.4.2:

Under the hypotheses of Theorem 4.4, if it is optimal to order

when stock is x and 9. periods remain , it is also optimal to

order when 9.’ period remain , Q ’ > 2. .

Remark:

We have not been able to show that the optimal productio n level

n (x) is nondecreasing in 2. . This seems to be an open question .
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CHAPTER 5

S1J!-*~ARY AND CONCLUSIONS

We present a general model of a process which requires costly

inspection in order to determine the state. At any time two alterna-

tives are available: to inspect the process (which may alter it),

or not to inspect.

The optimal time interval between successive inspections is

shown to be a decreasing function of the state at last inspection ,

under conditions specified herein.

Our model is applicable to a wide variety of deteriorating

processes, including repairable and non—repairable machines, and a

class of inventory problems with uncertain ordering .

The results presented illumInate the structure of optimal

inspection policies and are useful in computing such policies.

I

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ .



5!

REFERENCE S

[1] Beja, A., “Optimal Allowance with Constant Marg inal Produc-
tion Efficiency ,” Working Paper No. 18/2 , The Leon
Recanati Graduate School of Business Admin i s t r a t ion ,
Tel—Aviv University, (November 1972).

[2] Blackwell , D., “Discounted Dynamic Programming ,” Annals of
Mathematical Statistics, Vol. 36 , pp. 226—235 , (1965).

[3] Dermar,, C., “On Optimal Replacement Rules When Changes of State
are Markovian ,” in MATHEMATICAL OPTIMIZATION TECHNIQUES ,
R .  Bellman , ( e d . ),  (1963).

[4] Karlin , S., “One Stage Inventory Models with Uncertainty,” in
STUDIES IN THE MATHEMATICAL THEORY OF INVENTORY AND
PRODU CTION , Arrow , Karlin and Scarf , (eds.), Stanford
University Press , Stanford , California , (1958).

[5] Karlin , S., “Optimal Inventory Policy for the Arrow—Harris—
Marschak Dynamic Model ,” in STUDIES IN THE MATHEMATICAL
THE ORY OF INVENTORY AND PRODUCTION , Arrow , Kar~~in and
Scarf , (eds.), Stanford University Press , Stanford .
California , (1958) .

[6] Karlin. S., TOTAL POSITIVITY , Vol. 1, Stanford University Press ,
Stanford , California , (1968).

[71 Rosenfield , D., “Deteriorating Markov Processes Under Uncertainty,”
Technical Report 162, Department of Operations Research
and Department of Statistics , Stanford University,
Stanford , California .

[8] Rosenfield , D., “Markovian Deterioration with Uncertain
Information ,” Operations Research, Vol. 24, pp. 141—155 ,
(1976).

[9] Ross, S., APPLIED PROBABILITY MODELS WITH OPTIMIZATION
APPLI CATIONS , Chapter 6, Holden Day , San Francisco ,
California , (1970).

[10] Ross , S . ,  “Quality Control Under Markovian Deterioration ,”
Management Science, Vol. 17 , pp. 587—596 , (1971).

[ill Sackowitz , H. and E. Samuel—Cahn , “Inspection Procedures for
Markov Chains ,” Management Science, Vol. 21 , pp. 261—270,
(1974) .

[12] Strauch , R., “Negative Dynamic Programming ,” Annals of
Mathematical Statistics , Vol. 37 , pp. 871—890, (1966).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  _ _ _ _ _ _ _  _ _ _ _


